Skip to main content

Saluran Transmisi menengah

Saluran transmisi dicirikan oleh adanya resistansi dan induktansi seri per satuan panjang dan oleh kapasitansi paralel per-satuan panjang. Nilai-nilai ini menentukan kapasitas penyaluran daya dari masing-masing saluran transmisi dan drop tegangan pada saluran transmisi dalam kondisi berbeban.

Resistansi

Resistansi arus searah konduktor dinyatakan dengan persamaan berikut

Dimana
l = panjang konduktor
A = luas area melintang konduktor
ρ = resistivitas konduktor
Namun, ketika arus bolak-balik mengalir melalui konduktor, kepadatan arus tidaklah seragam di seluruh bagian permukaan konduktor, akan tetapi agak lebih dekat ke permukaan. Peristiwa ini disebut dengan skin effect yang membuat resistansi AC menjadi sedikit lebih tinggi daripada resistansi DC pada persamaan (1).

Suhu juga berpengaruh terhadap resistivitas konduktor. Kenaikan suhu pada konduktor logam hampir linier pada operasinya dan dapat dinyatakan dengan:

Dimana R1 dan R2 adalah resistansi pada temperatur t1 dan t2 dan T adalah konstanta yang bergantung pada bahan konduktor dan konduktifitasnya. Karena resistansi konduktor tidak dapat ditentukan secara akurat, maka cara yang paling baik untuk menentukannya adalah dengan melihat data yang disediakan oleh pabrikannya.

Induktansi

Persamaan untuk mencari induktansi dari saluran transmisi tiga fasa dinyatakan dengan persamaan:

Dari persamaan (3) dan (4) di atas, dapat diketahui bahwa:
  • Semakin besar jarak antar fasa dalam saluran transmisi, semakin besar nilai induktansinya. Hal ini terlihat dari besarnya GMD yang akan semakin meningkat bila jarak antar fasa tersebut semakin lebar, sehingga nilai induktansi-dan reaktansi induktif akan semakin besar.
  • Semakin besar jari-jari konduktor saluran transmisi, semakin kecil induktansinya. Hal ini terlihat dari besarnya besarnya r’ atau GMR yang akan semakin meningkat bila jari-jari konduktor semakin bertambah, sehingga nilai induktansi-dan reaktansi induktif akan semakin kecil.

Kapasitansi

Persamaan untuk mencari kapasitansi saluran transmisi tiga fasa dinyatakan melalui persamaan:

Dari persamaan di atas, dapat diketahui bahwa:
  • Semakin besar jarak antar fasa dalam saluran transmisi, semakin kecil nilai kapasitansinya. Hal ini terlihat dari besarnya nilai GMD yang akan semakin meningkat bila jarak antar fasa tersebut semakin lebar, sehingga nilai kapasitansi akan semakin kecil
  • Semakin besar jari-jari konduktor saluran transmisi, semakin besar pula nilai kapasitansinya. Hal ini terlihat dari besarnya r yang meningkat mengakibatkan nilai C akan semakin besar.

Model Saluran Transmisi

Tidak seperi generator, motor atau transformator, saluran transmisi secara fisik mempunyai panjang yang terbentang sejauh puluhan atau ratusan kilometer. Sebagai akibatnya, resistansi, induktansi dan kapasitansi yang berkaitan dengan saluran transmisi juga terdistribusi sepanjang saluran tersebut.
Elemen seri dan paralel yang terdistribusi dari saluran transmisi membuatnya lebih sulit untuk dimodelkan daripada transformator dan motor. Distribusi tersebut mungkin dapat didekati dengan menggunakan resistor, induktor dan kapasitor sebagaimana yang tergambar pada gambar berikut:

Akan tetapi, waktu yang dibutuhkan untuk menghitung tegangan dan arus yang mengalir melalui saluran transmisi akan sangat banyak karena harus melakukan perhitungan tegangan dan arus pada tiap-tiap simpul dari saluran transmisi.
Untungnya, adalah mungkin untuk membuat beberapa penyederhanaan dari model saluran transmisi tanpa mengakibatkan error yang besar dalam perhitungan berdasarkan panjang dari saluran transmisi itu sendiri, yaitu:
  • Saluran transmisi pendek untuk saluran yang mempunyai panjang kurang dari 80 Km (50 mil)
  • Saluran transmisi menengah untuk saluran yang mempunyai panjang antara 80 Km sampai 240 Km (150 mil), dan di beberapa referensi menyebutkan sampai 250 Km
  • Saluran transmisi panjang untuk saluran yang mempunyai panjang lebih dari 240/250 Km.

Two-port Network dan Model ABCD

Saluran transmisi merupakan salah satu contoh dari two-port network. Two-port network adalah sebuah jaringan yang dapat diisolasikan dari dunia luar dengan dua koneksi, atau port, sebagaimana tergambar pada gambar berikut:

Jika network bersifat linier, maka teorema rangkaian dasar (yang analog dengan teorema Thevenin) menyatakan hubungan antara tegangan pengirim dan tegangan penerima dan juga arus dapat saling dihubungkan melalui persamaan berikut:

Dimana konstanta A dan D tidak mempunyai dimensi, konstanta B mempunyai satuan ohm dan konstanta C mempunyai satuan siemen (S). Konstanta-konstanta ini seringkali disebut sebagai konstanta ABCD, dan saluran transmisi adalah salah satu contoh two-port network yang linier yang sering direpresentasikan dengan model ABCD.

Saluran transmisi pendek

Pada saluran transmisi pendek, kapasitansi paralelnya dapat diabaikan. Impedansi seri diasumsikan digabung seperti yang digambarkan pada gambar berikut:

Jika impedansi per Km untuk saluran transmisi yang mempunyai panjang K Km adalah z0 = r + jx, maka total impedansi dari saluran adalah Z = R + jX = Kr + jKx. Tegangan di ujung pengiriman dan arus untuk pendekatan ini adalah:

Sehingga parameter ABCD-nya yaitu:

Saluran transmisi menengah

Saluran transmisi menengah dapat didekati dengan menggunakan dua model, yaitu:
  • Model saluran π
  • Model saluran T
Pada saluran transmisi menengah, kapasitansi paralel tidak dapat diabaikan, akan tetapi dapat didekati dengan menggunakan dua model tersebut di atas.
Model saluran π
Model saluran π untuk saluran menengah digambarkan pada gambar berikut:

Dari gambar di atas, dengan menerapkan KCL pada simpul M dan N, didapatkan:

Dengan menerapkan KVL:
Substitusi persamaan untuk Vs ke persamaan untuk Is didapatkan:
Sehingga parameter ABCD-nya yaitu:
Model saluran T

Model saluran T digambarkan sebagai berikut:

Dengan menerapkan KCL di titik tengah, maka :

Dengan menyusun kembali persamaan di atas, maka:
Arus di ujung sisi penerima diberikan oleh persamaan:

Substitusi persamaan untuk VM ke persamaan untuk IR, dan dengan menyusunnya kembali, didapatkan:

Selanjutnya, arus di ujung sisi pengirim adalah:

Substitusi nilai persamaan untuk VM ke persamaan untuk IS, dan menyelesaikannya, maka akan didapatkan persamaan:
Parameter ABCD dari model saluran T adalah:

http://news.chivindo.com/793/saluran-transmisi-menengah.html

Comments

Popular posts from this blog

BT-BASIC commands used

8.10     Some of the most frequently used BT-BASIC commands used are: msi                               Changes default working directory. Mass storage is            Same as “msi” cat                               Catalogs (list)the node names in the specified directory.             get                               Brings the contents of a file into the system workspace.        ...

Perhitungan & Cara Merubah Kumparan Blender Dari 220 V Menjadi 12 V

          Seperti yang telah dijelaskan pada buku “menggulung motor listrik arus bolak-balik, servis peralatan listrik rumah tangga kelompok penggerak dan perbaikan peralatan listrik pertukangan”, bahwa motor penggerak yang digunakan pada perlatan listrik rumah tangga dan pertukangan seperti blender, mixer, bor tembak, gerinda dsb menggunakan jenis motor universal. Motor universal adalah jenis motor listrik yang dapat disuplai dengan sumber listrik arus bolak-balik (AC) dan arus searah (DC). Jadi peralatan-peralatan listrik rumah tangga dan pertukangan tersebut yang biasanya kita suplai dengan sumber listrik AC dari PLN atau Genset sebesar 220 V sebenarnya dapat juga kita suplai dengan sumber listrik DC yang tentunya tegangan juga harus sama yakni 220 V.           Yang menjadi permasalahan bagaimana kalau peralatan listrik rumah tangga atau pertukangan tersebut, sebagai contoh misalkan blender yang ingin digunakan atau dioper...

BT-BASIC command line

8.8       At the BT-BASIC command line type the command  msi  and the directory path, then press the “ENTER” key on the keyboard.  Example:                   msi ‘/hp3070/boards/aspect/main’ 8.9       At the BT-BASIC command line type the command  get ‘testplan’ and press the   ENTER” key on the keyboard.  You should now see the body of the testplan file displayed in the work space of the BT-BASIC window. 8.10     Some of the most frequently used BT-BASIC commands used are:

Autodesk SketchBook Pro 2021 Full Version

BAGAS31 – Sesuai dengan namanya, Autodesk SketchBook Pro 2021 Full Version ini merupakan software digital sketching atau drawing terbaik yang bisa kamu gunakan. Pada versi terbaru kali ini, ada beberapa penambahan fitur yang sangat efektif. Dengan fitur baru tersebut, diharapkan mampu meningkatkan proses sketching maupun drawing kamu. Autodesk SketchBook sendiri sudah bisa kamu dapatkan secara gratis melalui website resminya. Namun untuk kamu yang mau download versi Autodesk Sketchbook Pro, maka bisa langsung download melalui link yang sudah saya sediakan di bawah ini. Download Autodesk SketchBook Pro 2021 Full Version Screenshot: System Requirements: Windows 10 2.5 – 2.9 GHz of Intel or AMD CPU 4 GB of Memory 256 MB Graphics card with OpenGL 2.0 support We recommend that you use a pressure-sensitive tablet and pen for basic features Download: Autodesk SketchBook Pro 2021 Full Version [ FileUp ][ Uptobox ][ UsersDrive ] Jamu Only [ File...

Testhead

4.3         Testhead The testhead is that portion of the tester that supports the PIN, ASRU and Controller cards.   The testhead is divided into two BANKS and each BANK is divided into two MODULES, see figure 2 below.  Bank 1 contains modules 0 and 1, bank 2 contains modules 2 and 3.  The test fixtures are placed on the banks of the tester and locked down for board testing.  The testhead cards interface to the test fixture through the spring loaded pogo pin “nails” at the top edge on each of these card types. 4.4       Support Bay The support bay is a stand-alone cabinet that houses the power supplies for the Unit Under Test.  This bay also houses the test station power distribution unit and test station controller on earlier models. 4.5       Emergency Shutdown Switch The emergency shutdown switch is the large red button located at the lower left corne...

Kelebihan dan Kekurangan Saluran Listrik Jenis Saluran Udara dan Saluran Bawah Tanah

Berdasarkan pemasangannya,   saluran distribusi dibagi menjadi dua kategori, yaitu : saluran udara (overhead line) merupakan sistem penyaluran tenaga listrik melalui kawat penghantar yang ditompang pada tiang listrik. Sedangkan saluran bawah tanah (underground cable) merupakan sistem penyaluran tenaga listrik melalui kabel-kabel yang ditanamkan di dalam tanah. 1.    Saluran Bawah Tanah (Underground Lines) Saluran distribusi yang menyalurkan energi listrik melalui kabel yang ditanam didalam tanah. Kategori saluran distribusi seperti ini adalah yang favorite untuk pemasangan di dalam kota, karena berada didalam tanah, maka tidak mengganggu keindahan kota dan juga tidak mudah terjadi gangguan akibat kondisi cuaca atau kondisi alam. Namun juga memilik kekurangan, yaitu mahalnya biaya investasi dan sulitnya menentukan titik gangguan dan perbaikannya. Kedua cara penyaluran memiliki keuntungan dan kerugian masing-masing. Keuntungan yang dapat diperoleh dari suatu jaringan bawah...