Skip to main content

Greenhouse reduces Carbon Dioxide emissions.

The Dutch horticultural sector aims to be climate-neutral by 2040. Scientists at Wageningen University & Research have therefore recently built a new demonstration greenhouse ‘Greenhouse 2030’ in an effort to find ways to reduce CO2 emissions as well eliminating the need for crop protection chemicals and optimizing the use of water and nutrients.

Greenhouses helping to reduce greenhouse gas emissions

Scientists at Wageningen University & Research (WUR) in the Netherlands have employed Vaisala carbon dioxide sensors in their research greenhouses for over a decade. Carbon dioxide is an extremely important measurement parameter in plant science, not just because plants need carbon dioxide to grow, but also because environmental emissions contribute to climate change, so enormous threats and opportunities surround this gas. As a world renowned research organisation, the value of the institute’s work is partly dependent on the accuracy and reliability of sensors, so it is important that its researchers do not compromise on sensor quality.

Wageningen has been one of the driving forces in research and technology development for greenhouse horticulture in the Netherlands. The institute’s expertise in the greenhouse cultivation of ornamental, fruit and vegetable crops is unique, and together with growers and technology partners, it has developed new cultivation systems, climate control systems, revolutionary greenhouse cover materials and other innovations. The application of these new technologies has made greenhouse horticulture in the Netherlands a world leader.

The Plant Research Institute operates over 100 greenhouse compartments at its Bleiswijk site, which means that researchers are able to generate a wide variety of environmental conditions. Typical environmental variables include light, water, growing medium, nutrients, (biological) pest/disease control, temperature, humidity and of course carbon dioxide (CO2); all of which have significant effects on crop yields.

The Dutch horticultural sector aims to be climate-neutral by 2040. The Wageningen researchers have therefore recently built a new demonstration greenhouse ‘Greenhouse 2030’ for the cultivation of vegetables, fruit and flowers in an effort to find ways to reduce CO2 emissions as well eliminating the need for crop protection chemicals and optimizing the use of water and nutrients. Pests and diseases are preferably tackled biologically, and the energy-efficient greenhouse reuses water and nutrients as much as possible; leading to cleaner cultivation and improved yields.

Carbon Dioxide in Greenhouses
Carbon dioxide is a by-product of many processes in the oil, gas and petrochemical industries, but it is also required by plants to grow through photosynthesis, so Dutch greenhouse operators have collaborated with the country’s industrial sector to utilise this byproduct and thereby contribute in the fight against climate change by lowering the country’s net CO2 emissions. Globally, many greenhouse operators burn natural gas to generate CO2, but this also generates heat that may not be needed in the summer months, so the utilisation of an industrial byproduct is significantly preferable.

Carbon dioxide was first delivered to Dutch greenhouses in 2005 via a pipe network established by the company Organic Carbon Dioxide for Assimilation of Plants (OCAP). Commercial greenhouse operators pay for this CO2 supply, which is largely derived from a bio ethanol plant. A key feature of the Institute’s research is work to optimise the utilisation of CO2, along with other plant growth variables. For example, the Institute has developed a simulation tool for CO2 dosing: the “CO2-viewer.” This programme monitors and displays the effects of a grower’s dosing strategy. For instance, it enables the evaluation of CO2 dosing around midday compared with dosing in the morning. The computational results of such an evaluation take all relevant greenhouse building characteristics and climate control settings into account.

Monitoring Carbon Dioxide

CO2 Probe

After around 10 years of operation, the institute is replacing around 150 of the older model probes with a newer model. The calibration of all probes is checked prior to the commencement of every project, utilizing certified reference gases. It is important that calibration data is traceable, so each probe’s calibration certificate is retained and subsequent calibration checks are documented. A portable CO2 monitor (a Vaisala GM70) with a GMP252 CO2 probe are also used as a validation tool to check installed probes, even though further calibration is not necessary.

Currently, the Institute’s installed probes provide 4-20 mA signals which feed into ‘climate computers’ that are programmed to manage the greenhouses automatically. This system also raises alarms if CO2 levels approach dangerous levels for any reason.

CO2 Sensor Technology
Carbon dioxide absorbs light in the infrared (IR) region at a wavelength of 4.26 μm. This means that when IR radiation is passed through a gas containing CO2, part of the radiation is absorbed, and this absorbance can be measured. The Vaisala CARBOCAP® carbon dioxide sensor features an innovative micro-machined, electrically tunable Fabry-Perot Interferometer (FPI) filter. In addition to measuring CO2 absorption, the FPI filter enables a reference measurement at a wavelength where no absorption occurs. When taking the reference measurement, the FPI filter is electrically adjusted to switch the bypass band from the absorption wavelength to a non-absorption wavelength. This reference measurement compensates for any potential changes in the light source intensity, as well as for contamination or dirt accumulation in the optical path. Consequently, the CARBOCAP® sensor is highly stable over time, and by incorporating both measurements in one sensor, this compact technology can be incorporated into small probes, modules, and transmitters.

The CARBOCAP® technology means that the researchers don’t have to worry about calibration drift or sensor failure.

Carbon Dioxide Plant Science Research
Two projects are currently underway evaluating the effects of different CO2 levels on plant production. One is studying soft fruit and the other tomatoes; however with CO2 playing such an important role in both plant growth and climate change, the value of accurate measurements of this gas continues to grow. Most of the greenhouses are now connected to the institute’s Ethernet and a wide variety of new sensors are continually being added to the monitoring network; providing an opportunity to utilise new ‘smart’ sensors.

Summary
The accuracy, stability and reliability of the CO2 sensors at Bleiswijk are clearly vitally important to the success of the Institute’s research, particularly because data from one greenhouse are often compared with data from others.

The CO2 supply has a cost; it is therefore important that this resource is monitored and supplied effectively so that plant production can be optimized.

Clearly, moves to lower the use of fossil fuels and develop more efficient energy management systems will help to reduce CO2 emissions from the greenhouse sector. However, the importance of CO2 utilization is set to grow, given the 2040 climate-neutral target and the world’s need to find new and better ways to capture CO2 emissions in ways that are both sustainable and economically viable.

#Hortoculture #Environment @VaisalaGroup @_Enviro_News

http://news.chivindo.com/321/greenhouse-reduces-carbon-dioxide-emissions-.html

Comments

Popular posts from this blog

BT-BASIC commands used

8.10     Some of the most frequently used BT-BASIC commands used are: msi                               Changes default working directory. Mass storage is            Same as “msi” cat                               Catalogs (list)the node names in the specified directory.             get                               Brings the contents of a file into the system workspace.             load                             Same as “get”.             msi$                            Returns the directory pathname of the current working directory.             msi “..”                       Backs up one directory level.             findn                            Locates the next occurrence of the a given sting in the workspace. 8.11           If you wish to invoke the HP Board Graphics Viewer, type board graphics at the BT-BASIC command line and press the “ENTER” key on the keyboard. 8.12           A HP Board Graphics Viewer window should now appear

Perhitungan & Cara Merubah Kumparan Blender Dari 220 V Menjadi 12 V

          Seperti yang telah dijelaskan pada buku “menggulung motor listrik arus bolak-balik, servis peralatan listrik rumah tangga kelompok penggerak dan perbaikan peralatan listrik pertukangan”, bahwa motor penggerak yang digunakan pada perlatan listrik rumah tangga dan pertukangan seperti blender, mixer, bor tembak, gerinda dsb menggunakan jenis motor universal. Motor universal adalah jenis motor listrik yang dapat disuplai dengan sumber listrik arus bolak-balik (AC) dan arus searah (DC). Jadi peralatan-peralatan listrik rumah tangga dan pertukangan tersebut yang biasanya kita suplai dengan sumber listrik AC dari PLN atau Genset sebesar 220 V sebenarnya dapat juga kita suplai dengan sumber listrik DC yang tentunya tegangan juga harus sama yakni 220 V.           Yang menjadi permasalahan bagaimana kalau peralatan listrik rumah tangga atau pertukangan tersebut, sebagai contoh misalkan blender yang ingin digunakan atau dioperasikan pada tempat yang tidak terdapat sumber listrik PLN ata

BT-BASIC command line

8.8       At the BT-BASIC command line type the command  msi  and the directory path, then press the “ENTER” key on the keyboard.  Example:                   msi ‘/hp3070/boards/aspect/main’ 8.9       At the BT-BASIC command line type the command  get ‘testplan’ and press the   ENTER” key on the keyboard.  You should now see the body of the testplan file displayed in the work space of the BT-BASIC window. 8.10     Some of the most frequently used BT-BASIC commands used are:

Autodesk SketchBook Pro 2021 Full Version

BAGAS31 – Sesuai dengan namanya, Autodesk SketchBook Pro 2021 Full Version ini merupakan software digital sketching atau drawing terbaik yang bisa kamu gunakan. Pada versi terbaru kali ini, ada beberapa penambahan fitur yang sangat efektif. Dengan fitur baru tersebut, diharapkan mampu meningkatkan proses sketching maupun drawing kamu. Autodesk SketchBook sendiri sudah bisa kamu dapatkan secara gratis melalui website resminya. Namun untuk kamu yang mau download versi Autodesk Sketchbook Pro, maka bisa langsung download melalui link yang sudah saya sediakan di bawah ini. Download Autodesk SketchBook Pro 2021 Full Version Screenshot: System Requirements: Windows 10 2.5 – 2.9 GHz of Intel or AMD CPU 4 GB of Memory 256 MB Graphics card with OpenGL 2.0 support We recommend that you use a pressure-sensitive tablet and pen for basic features Download: Autodesk SketchBook Pro 2021 Full Version [ FileUp ][ Uptobox ][ UsersDrive ] Jamu Only [ FileUp ][ Uptob

Testhead

4.3         Testhead The testhead is that portion of the tester that supports the PIN, ASRU and Controller cards.   The testhead is divided into two BANKS and each BANK is divided into two MODULES, see figure 2 below.  Bank 1 contains modules 0 and 1, bank 2 contains modules 2 and 3.  The test fixtures are placed on the banks of the tester and locked down for board testing.  The testhead cards interface to the test fixture through the spring loaded pogo pin “nails” at the top edge on each of these card types. 4.4       Support Bay The support bay is a stand-alone cabinet that houses the power supplies for the Unit Under Test.  This bay also houses the test station power distribution unit and test station controller on earlier models. 4.5       Emergency Shutdown Switch The emergency shutdown switch is the large red button located at the lower left corner on the front of the testhead.  It turns off all AC power to the testhead, and is equivalent to turning off the m

Kelebihan dan Kekurangan Saluran Listrik Jenis Saluran Udara dan Saluran Bawah Tanah

Berdasarkan pemasangannya,   saluran distribusi dibagi menjadi dua kategori, yaitu : saluran udara (overhead line) merupakan sistem penyaluran tenaga listrik melalui kawat penghantar yang ditompang pada tiang listrik. Sedangkan saluran bawah tanah (underground cable) merupakan sistem penyaluran tenaga listrik melalui kabel-kabel yang ditanamkan di dalam tanah. 1.    Saluran Bawah Tanah (Underground Lines) Saluran distribusi yang menyalurkan energi listrik melalui kabel yang ditanam didalam tanah. Kategori saluran distribusi seperti ini adalah yang favorite untuk pemasangan di dalam kota, karena berada didalam tanah, maka tidak mengganggu keindahan kota dan juga tidak mudah terjadi gangguan akibat kondisi cuaca atau kondisi alam. Namun juga memilik kekurangan, yaitu mahalnya biaya investasi dan sulitnya menentukan titik gangguan dan perbaikannya. Kedua cara penyaluran memiliki keuntungan dan kerugian masing-masing. Keuntungan yang dapat diperoleh dari suatu jaringan bawah tanah adalah