Skip to main content

Menurunkan Rating Tegangan Gulungan/Kumparan Motor Induksi

          Konstruksi gulungan stator dalam motor arus bolak-balik (AC) atau biasa disebut motor induksi secara nyata sangat rumit. Stator motor induksi yang normal terdiri dari sejumlah kumparan dalam masing-masing fasa, terdistribusi dalam alur (slot) di sekeliling permukaan bagian dalam stator. Pada motor induksi yang lebih besar, masing-masing kumparan terdiri dari sejumlah lilitan, tiap lilitan terisolasi dari lilitan lainnya dan dari sisi statornya sendiri.
          Tegangan dalam tiap kawat lilitan tunggal ukurannya sangat kecil dan hanya dengan menempatkan sejumlah kawat lilitan tersebut secara seri maka sejumlah tegangan dapat diberikan/dihasilkan. Sejumlah besar kawat lilitan biasanya dibagi dalam beberapa kumparan, dan kumparan tersebut ditempatkan dalam alur pada permukaan stator.
          Faktor distribusi (fd) adalah cara yang tepat untuk menyederhanakan penurunan rating tegangan pada motor induksi, dikarenakan oleh distribusi spasial pada kumparan dalam gulunganstator. Untuk gulungan dengan sejumlah n alur per sabuk fasa terpisah sebesar γ derajat, faktor distribusinya dapat dihitung dengan persamaan :

fd = sin (Yg.Y/2) / Yg. sin (Y/2)

          Faktor langkah atau pitch factor (fp) dan faktor distribusi (fd) kumparan biasanya dikombinasikan untuk mempermudah penggunaannyadalam faktor kumparan tunggal (fw). Faktor kumparan pada stator dirumuskan dengan persamaan : fw = fp . fd. Sementara untuk faktor langkah (Kp) kumparan itu sendiri dirumuskan dengan persamaan : fp = sin (ρ/2).
          Mengaplikasikan persamaaan-persamaan sebelumnya dimana jumlah lilitan per fasa (Zf) dapat dihitung dengan persamaan :


Zf = (108 x Ef ) / (4,44 x Φ x fp x fd x f)

          Ukuran penampang kawat lilitan stator dapat diperkirakan dari arus stator per fasa dan diasumsikan sesuai dengan nilai kerapatan arus untuk kumparan stator. Persamaan area penampang kawat lilitan stator yaitu
q = I / S


          Untuk menentukan ukuran kawat lilitan dan jumlah lilitan motor induksi 3 fasa dalam perancangan ini perlu diukur terlebih dahulu beberapa parameter yang dibutuhkan, sebagai contoh parameter motor induksi 3 fasa tersebut seperti yang ditunjukkan pada tabel 1 berikut ini.

Tabel 1 Konstruksi motor induksi 3 fasa lama

No

Parameter

Nilai

1

Rating tegangan fasa

220 V

2

Rating arus (I)

2,1 A

3

Jumlah kutub (P)

4 buah

4

Jumlah alur stator (G)

24 buah

5

Diameter inti stator (D)

11,1 cm

6

Panjang  inti stator (L)

6,8 cm

7

Diameter kawat lilitan

0,55 mm

8

Jumlah lilitan per kutub per fasa

125 lilitan


          Untuk menghitung jumlah lilitan terlebih dahulu jarak antar kutub (pole pitch) yang didapatkan dengan persamaan :                                  
                                                    Yp = (π.D) / P

                                                   = (3,14 x 11,1) / 4

                                                   = 8,7 cm


Berhubung diameter inti stator kurang dari 0,15 m atau 15 cm, maka dalam hal ini dipilih kerapatan flux pada udara bebas per cm (β) = 3.500 Wb/cm², sehingga jumlah flux tiap kutub adalah : 
                                                     Φ = Yp . L . β
                                                  =  8,7 x 6,8 x 3.500
                                                  = 207.060 Weber


Langkah atau jarak alur per kutub per phasa (Yg) adalah jumlah alur stator dibagi dengan jumlah kutub dikali dengan jumlah phasa, sehingga Yg = 24 / (4x3) = 2.

Karena lilitan yang akan digunakan adalah jenis langkah diperpendek (fractional pitch) sebesar 5/6 maka untuk faktor langkah (pitch factor) kumparan sesuai adalah
                                                     fp =  sin (150º / 2)
                                                         = sin 75º
                                                         = 0,966.


Jarak antar group lilitan per alur dalam satuan derajat radian adalah : Y = 360º / 24 = 15º  radian, sehingga didapatkan faktor distribusi (fd) sebesar :

                                               fd = sin (Yg.Y/2) / Yg.sin (Y/2)
                                                   = sin (2 x 15º/2) / (2 x sin (15º/2))   
                                                   = 0,9914       


Dari hasil-hasil perhitungan tersebut diatas, jika rating tegangan motor induksi 3 fasa diturunkan menjadi 60 V didapatkan jumlah lilitan per fasa yaitu sebesar :

                                                     Zf = (108 x Ef) / (4,44 x Φ x fp x fd x f)
                                                         = (108 x 60) / (4,44 x 207.060 x 0,966 x 0,9914 x 50)
                                                         = (108 x 60) / (44.022.553)
                                                         = 136 lilitan


Jadi jumlah lilitan 3 fasa    =  136 x 3  =  408 lilitan 
sedangkan jumlah lilitan per alur = 408 / 24 = 17 lilitan

          Tujuan utama dalam perancangan ini adalah menurunkan tegangan awal motor induksi dari 220 V menjadi tegangan 60 V dengan tetap mempertahankan daya motor orisinal dan karakteristik yang dibutuhkan tidak berubah, maka dapat digunakan persamaan :                                          
Pa = Pb

3.Va.Ia = 3.Vb.Ib

          Jika Va = 220 V dan Vb = 60 V, maka Ib = (220/60) Ia atau qb = (220/60) qb. Perlu diperhatikan bahwa kumparan stator motor-A disusun dari satu kawat dengan diameter 0,55 mm yang berarti jari-jari (r) kawat sebesar0,275 mm sehingga ukuran luas penampang kawat motor-A :
                                                               qa = π . r²
                                                              = 3,14 x 0,275

                                                              = 0,237 mm²


          Jika Ia = 2,1 A maka didapatkan arus Ib = (220/60) x 2,1 = 7,7 A sehingga ukuran luas penampang kawat motor-B :

qb = (220/60) x 0,237

                                                              = 0,869 mm²


Dengan demikian kawat lilitan motor-B minimal harus memiliki diameter sebesar :
                                                                db = 2 √(qb/π)
                                                              = 2 √(0,869/3,14)

                                                              = 1,05 mm


          Apabila diameter dianggap terlalu besar sehingga menyulitkan penggulungan secara manual, maka kawat dapat dipecah menjadi 4 paralel, dengan menggunakan rumus :
                                                               qb = 0,869 / 4
                                                             = 0,217 mm² dan

                                                        db = 2 √(0,217/3,14)

                                                             = 0,526 mm (dibulatkan menjadi 0,55 mm).


Jadi motor induksi baru ini menggunakan rangkaian paralel sejumlah 4 dengan ukuran diameter kawat lilitan masing-masing 0,55 mm.  

          Kemudian untuk mempertahankan jumlah ampere lilit (total ampere turns) dari mesin tetap konstan, maka digunakan persamaan :
3.Za.Ia = 3.Zb.Ib sehingga Zb = (60/220) Za

Karena jumlah lilitan per kutub per fasa motor-A sebanyak 125 lilitan, maka jumlah lilitan per kutub per fasa motor-B :
                                                               Zb = (60/220) x 125
                                                             = 34 lilitan
dan jumlah kawat per fasa per kutub = 2 x 34 = 68 kawat lilitan.

Jadi dari hasil perhitungan secara teoritis dan praktis hasilnya sama yakni sejumlah 136 lilitan per fasa. Dengan demikian dari perhitungan untuk mendapatkan motor induksi 3 fasa yang baru, maka didapatkan parameter baru seperti tercantum pada tabel 2  berikut ini.

Tabel 2. Konstruksi motor induksi 3 fasa baru

No

Parameter

Nilai

1

Rating tegangan fasa

60 V

2

Rating arus (I)

7,7 A

3

Jumlah kutub (P)

4 buah

4

Jumlah alur stator (G)

24 buah

5

Diameter inti stator (D)

11,1 cm

6

Panjang  inti stator (L)

6,8 cm

7

Diameter kawat lilitan

4 x 0,55 mm

8

Jumlah lilitan per kutub per fasa

34 lilitan

9

Jumlah kawat  per kutub per fasa

64 kawat


NB : Keterangan dan penjelasan tentang notasi huruf pada rumus-rumus tersebut diatas dapat dibaca pada buku "Menggulung Motor Listrik Arus Bolak-Balik (AC)" 
http://margionoabdil.blogspot.com, http://facebook.com/margiono abdil, http://twitter.com/margionoabdil, http://edmodo.com/margionoabdil
http://news.chivindo.com/159/menurunkan-rating-tegangan-gulungan-kumparan-motor-induksi.html

Comments

Popular posts from this blog

BT-BASIC commands used

8.10     Some of the most frequently used BT-BASIC commands used are: msi                               Changes default working directory. Mass storage is            Same as “msi” cat                               Catalogs (list)the node names in the specified directory.             get                               Brings the contents of a file into the system workspace.             load                             Same as “get”.             msi$                            Returns the directory pathname of the current working directory.             msi “..”                       Backs up one directory level.             findn                            Locates the next occurrence of the a given sting in the workspace. 8.11           If you wish to invoke the HP Board Graphics Viewer, type board graphics at the BT-BASIC command line and press the “ENTER” key on the keyboard. 8.12           A HP Board Graphics Viewer window should now appear

Perhitungan & Cara Merubah Kumparan Blender Dari 220 V Menjadi 12 V

          Seperti yang telah dijelaskan pada buku “menggulung motor listrik arus bolak-balik, servis peralatan listrik rumah tangga kelompok penggerak dan perbaikan peralatan listrik pertukangan”, bahwa motor penggerak yang digunakan pada perlatan listrik rumah tangga dan pertukangan seperti blender, mixer, bor tembak, gerinda dsb menggunakan jenis motor universal. Motor universal adalah jenis motor listrik yang dapat disuplai dengan sumber listrik arus bolak-balik (AC) dan arus searah (DC). Jadi peralatan-peralatan listrik rumah tangga dan pertukangan tersebut yang biasanya kita suplai dengan sumber listrik AC dari PLN atau Genset sebesar 220 V sebenarnya dapat juga kita suplai dengan sumber listrik DC yang tentunya tegangan juga harus sama yakni 220 V.           Yang menjadi permasalahan bagaimana kalau peralatan listrik rumah tangga atau pertukangan tersebut, sebagai contoh misalkan blender yang ingin digunakan atau dioperasikan pada tempat yang tidak terdapat sumber listrik PLN ata

BT-BASIC command line

8.8       At the BT-BASIC command line type the command  msi  and the directory path, then press the “ENTER” key on the keyboard.  Example:                   msi ‘/hp3070/boards/aspect/main’ 8.9       At the BT-BASIC command line type the command  get ‘testplan’ and press the   ENTER” key on the keyboard.  You should now see the body of the testplan file displayed in the work space of the BT-BASIC window. 8.10     Some of the most frequently used BT-BASIC commands used are:

Autodesk SketchBook Pro 2021 Full Version

BAGAS31 – Sesuai dengan namanya, Autodesk SketchBook Pro 2021 Full Version ini merupakan software digital sketching atau drawing terbaik yang bisa kamu gunakan. Pada versi terbaru kali ini, ada beberapa penambahan fitur yang sangat efektif. Dengan fitur baru tersebut, diharapkan mampu meningkatkan proses sketching maupun drawing kamu. Autodesk SketchBook sendiri sudah bisa kamu dapatkan secara gratis melalui website resminya. Namun untuk kamu yang mau download versi Autodesk Sketchbook Pro, maka bisa langsung download melalui link yang sudah saya sediakan di bawah ini. Download Autodesk SketchBook Pro 2021 Full Version Screenshot: System Requirements: Windows 10 2.5 – 2.9 GHz of Intel or AMD CPU 4 GB of Memory 256 MB Graphics card with OpenGL 2.0 support We recommend that you use a pressure-sensitive tablet and pen for basic features Download: Autodesk SketchBook Pro 2021 Full Version [ FileUp ][ Uptobox ][ UsersDrive ] Jamu Only [ FileUp ][ Uptob

Testhead

4.3         Testhead The testhead is that portion of the tester that supports the PIN, ASRU and Controller cards.   The testhead is divided into two BANKS and each BANK is divided into two MODULES, see figure 2 below.  Bank 1 contains modules 0 and 1, bank 2 contains modules 2 and 3.  The test fixtures are placed on the banks of the tester and locked down for board testing.  The testhead cards interface to the test fixture through the spring loaded pogo pin “nails” at the top edge on each of these card types. 4.4       Support Bay The support bay is a stand-alone cabinet that houses the power supplies for the Unit Under Test.  This bay also houses the test station power distribution unit and test station controller on earlier models. 4.5       Emergency Shutdown Switch The emergency shutdown switch is the large red button located at the lower left corner on the front of the testhead.  It turns off all AC power to the testhead, and is equivalent to turning off the m

Kelebihan dan Kekurangan Saluran Listrik Jenis Saluran Udara dan Saluran Bawah Tanah

Berdasarkan pemasangannya,   saluran distribusi dibagi menjadi dua kategori, yaitu : saluran udara (overhead line) merupakan sistem penyaluran tenaga listrik melalui kawat penghantar yang ditompang pada tiang listrik. Sedangkan saluran bawah tanah (underground cable) merupakan sistem penyaluran tenaga listrik melalui kabel-kabel yang ditanamkan di dalam tanah. 1.    Saluran Bawah Tanah (Underground Lines) Saluran distribusi yang menyalurkan energi listrik melalui kabel yang ditanam didalam tanah. Kategori saluran distribusi seperti ini adalah yang favorite untuk pemasangan di dalam kota, karena berada didalam tanah, maka tidak mengganggu keindahan kota dan juga tidak mudah terjadi gangguan akibat kondisi cuaca atau kondisi alam. Namun juga memilik kekurangan, yaitu mahalnya biaya investasi dan sulitnya menentukan titik gangguan dan perbaikannya. Kedua cara penyaluran memiliki keuntungan dan kerugian masing-masing. Keuntungan yang dapat diperoleh dari suatu jaringan bawah tanah adalah